50x+x^2/100+200=27700

Simple and best practice solution for 50x+x^2/100+200=27700 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 50x+x^2/100+200=27700 equation:



50x+x^2/100+200=27700
We move all terms to the left:
50x+x^2/100+200-(27700)=0
We add all the numbers together, and all the variables
x^2/100+50x-27500=0
We multiply all the terms by the denominator
x^2+50x*100-27500*100=0
We add all the numbers together, and all the variables
x^2+50x*100-2750000=0
Wy multiply elements
x^2+5000x-2750000=0
a = 1; b = 5000; c = -2750000;
Δ = b2-4ac
Δ = 50002-4·1·(-2750000)
Δ = 36000000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{36000000}=6000$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5000)-6000}{2*1}=\frac{-11000}{2} =-5500 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5000)+6000}{2*1}=\frac{1000}{2} =500 $

See similar equations:

| 3y+4y−5=513y+4y−5=51. | | −y/9+41=−9y​+41=  4242 | | −y9+41=−9y​+41=  4242 | | 0.035x=0.04x-60 | | 0.09x+0.13(300+x)=61 | | -3n+7=-4 | | 5c−6∣= 31 | | 5c−6∣=  3131 | | -35-7a=-7(1+5a) | | -40+4a=-8(3a+5) | | 14-3⋅(3-3x)=50 | | -1/2x+30=32 | | x+23+102=180 | | 9y+4=3y+7=71 | | 4(2x=5)-3x | | 5x-120=-6x+1 | | 7(x-2)+5=3(2x-1) | | x-7/5-9=4 | | 110=2(2x-5) | | 5a–4a=15a= | | -10x+21=-9 | | (6+x/3+3)=20 | | -5x^2-3=-48 | | 6+x/3+3=20 | | 20+x+12+2x=200 | | 12x-4x+128=12x+76 | | 192=-3(7n-8) | | 3x+11/2=10 | | 9=4x-1+x | | x-100=-14(x=0) | | 143+152+116+125+140+139+2x+x=815 | | 3+x/15=4 |

Equations solver categories